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Applying (3.119) to y"" = Ay, we get the characteristic equation
p(€) — ho(§) =0 (3.126)
where Ah2 = h.
The two roots of (3.126) tend to be the double principal root § = 1 as A—0.
Let €, j =1, 2, ..., k be the roots of (3.126). The linear k-step method
(3.119)is called absolutely stable if ‘

[ énl <1,j=1,2, ..,k (3.127)
and it is called relatively stable if
| €| <min (| énlénl)j=23.4,..k (3.128)

DEFINITION 3.14 A multistep method of the form (3.119) when applied
to the problem y" =—Ay, A > 0 is said to have interval of periodicity
(0, ho), h €(0, hy), B = Ar?, if all the roots of p(€)+%o(£) = 0 are complex
and lie on the unit circle.

DEFINITION 3.15 A multistep method is said to be P-stable if its interval
of periodicity is (0, e0).
The main result about the P-stable linear multistep method is the following:

THEOREM 3.9 The order p of a P-stable method cannot exceed 2 and the
method must be implicit.
For k = 2, we write (3.119) as

Vet1 = @1Yn+a2Yn_y+h? (boy, , +b1y, +ba2y,_)) v (3.129)

where a;’s and b,’s are arbitrary.
From (3.120), we find that the formula (3.129) is of first order when

a = 2, az =—1,b2 = l—bo-bl (3]30)
second order when, in addition,
) bo,—bz =90 , (3131)
and third order when in addition to (3.130) and (3.131),
byt+by = % - (3.132)

To study the stability of the linear multistep method (3.129) we apply it
to the test equation y” = —Ay, A > 0. We write the characteristic equation as

(14+-boh)e2—(2—bh)é+1+bh = 0 (3.133)
Substituting ¢ = (1+2)/(1—2) in (3.133), we get
[4+R(1—2b))]z24+-2Q2by+by—1) Az-+h = 0 (3.134)

Using the Routh-Hurwitz criterion in (3.134), we find that the roots of
(3.133) will lie within the unit circle if

() b <3 26p+b > 1L,F>0
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or

(i) by > 3, 2bo+by > 1,5 < -2%_7 = hy (3.135)

The stability interval (0, ko) as function of the parameters bo and b, is
shown in Figure 3.11. The values by = 0, b = 0, by = 1 give a first order
formula '

Yny1 = 2}’n—yn—|+h2}’;,'+[ (3°136)
The roots of the characteristic equation (3.133) are complex and their
magnitude is
1
v/ 1+h
which shows that the formula (3.136) is A-stable. For b, < 1/2,
by = (1—b)/2, b, = (1—b,)/2, we obtain a second order stable formula

1é1=

2 ” ” 7
Yt = 2yn-yn-1+h?[(1 =51 H201y,F(1=b0y,_q) (3.137)

The roots of the characteristic equation (3.133) are for all A-values on
the unit circle. Thus the formula (3.137) is P-stable for all values by < 1/2.

For by = —%—, we obtain the Dahlquist method
h o, . - ‘
Ynbt=2WntVnt = 7 Vpi1 T2t Vuo) (3.138)

which is P-stable and second order with minimum truncation error. The

value b; = —g— gives a second order method

h . v o
Yor1—2Ynt Vo1 = 'g(}’"“ +4y,,+y,._,) (3.139)

with interval of periodicity (0, 12). Finally, when we choose b; = -%, the

difference scheme (3.129) becomes the fourth order Numerov method (3.125)
and it has interval of periodicity (0, 6).

The P(EC)™E mode discussed in Section 3.6.2 can easily bé written here
with A replaced by A2 Similarly, the modified predictor-corrector mode in
Section 3.6.4 is also adaptable here.

Example 3.7 Use the Numerov method to determine »(0.6), where y(¢)
denotes the solution of the initial value problem

y'+ty =0,y0) = 1,y(0) =0
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Fig. 3.11 Stability boundaries in the (b,, b;) plane

The Numerov method is given by

’

B, o, "y e
Vnt1=2Yn—2Yny = l—z(y,..j.l +10y,+y,_), n =1

Here, we require the values y, and y; to start the computation. The Nume-
rov method has order four and we use a fourth order singlestep method to
determine the value y,. The Taylor series method gives

h3 v hS
W) =1-"g ¥ i35

+ ...
For h = .2, we get
3
»n= 1—% = 9986667

We obtain,
forn=1;

B, . vy
Y2 = 2y;—yot+ ﬁ(y2+10y1 +yy)
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The parameters B, and B, are determined such that the method (3.146) is
P-stable. Applying the method (3.146) to the test equation Yy ==ay,A>0,
we obtain

A Vis1—2B yut-A yu-y =0 (3.148)

where
A = 1+ph- —12"_(115—‘/31—)32) i
/
B = 1—(—]2——3, )7:+—;—Bz h? (3.149)

It is easily verified that the characteristic equation
A82—-2Bt+A4 =0 (3.150)

associated with the method (3.146) will have all its roots complex and are of
unit modulus if and only if

@) Bt Bi= i g > 0
(il) By = Tli (3.151)

we get the Hairer method

For the values B; = l—li and B; = 7—12,

Va1 — 2Yn+ Ynoi
L 4y B o 2piv) t pliv) 3.152
12 (y,,_H+lOy"+y,,_,)—m(y,,+1— Vn +Vnt (3.152)

with the minimum truncation error

1

— . h6yliv)
360 "7

T ()

3.8.3 Adaptive numerical methods
We write (3.117) in the form

V' +py = 4(t, ¥) (3.153)
where .
#(t,y) = py+£1, y) (3.154)

and p> 0 is an arbitrary parameter to be determined. From application view
point, the perturbing force #(t, y) is assumed to be small with respect to the
restoring force py, we may therefore approximate ¢(z, y) by a polynomial g(¢)
of an appropriate degree. Integrating (3.153) between the limits fn_; 1O fn+1,
we get : :
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Yturs)—2 cosV phy(ta)+y(ta-1)

triy

\/H sin V7 Ctost—lg(r)-+g(2tn—7)] dr (3.155)

ta
We now approximate g(7) in (3.155) by the Newton backward difference for-
mula (3.7) and (3.14) to get the explicit and implicit multistep methods. We
have the explicit methods
yﬂ+l—2 cos 2‘7 }’u+Yn-1
sin? o
= =%

n ( )\_}-2-3—7?(1—‘5—)\ ))7‘¢,,+...] (3.156)

[$n+Ap2but A7 ¢

where
s = Vph
2
1 1 1
A= —4—(sin2 ) ——&3)
4’/1 = pyrl+fn (3.’57)

Similarly, we obtain the implicit methods

Vng1—2 COS 20Yn—+Ynt
;2
s 2 [Bni1— PPns1+A7 Pt

ol

+7:,7(Tl§ —A)( Pén1+ P Pus)+ o] (3.158)

= h2

The coefficient of the third difference is zero in (3.158) and therefore the use
of second or third difference gives the same accuracy. Retaining up to the
second differences, we have the Stiefel-Bettis formula

Ynt1—2 €OS 26 YntYn-1
sin2 o
2 [¢'+'\Vz¢n+|]

(4

= h?

which may be written as
yn+l—2yn+)’n_l = hz[Afn+l+(l_2A)fn+Afn—1] (3159)
This formula (3.159) is the stabilized Numerov method. It is of order two
for arbitrary ¢ and of order four for ¢ —» 0. With (3.159) we associate a dif-
ference operator :
Liyp(6), h) = y(tus1)—2 Y{ta)+y(tn-1)
— WM (tns1, ,V(tu+l.))+(1_2)‘)f(fm ¥(tn))
+Af(tu-t, Y(tn1))] (3.160)
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DEFINITION 3.16 The method (3.118) is said to be of trigonometric order
p relative to the frequency w if

Lw[l, h] = 0, Lu[cos rwt, h] = O, L,[sin rwt, h] = 0
Lufcos (r+1)wt, h] # 0, Lulsin (r+1)wt, i} # 0, r = 1,2,..., p
where p is the largest integer and L [y(r), 4] is the difference operator.

Substituting y(t) = ™, w = 2;'—’, in the difference operator (3.160) we find

Lie™, hl =0
which shows that the method (3.159) is of trigonometric order one. Thus,
the method (3.159) is of polynomial order two and trigonometric order one.

3.8.4 Results from computation

We use the Dahlquist method (3.138), the Numerov method (3.125) and
the Stiefel-Bettis method (3.159) to find the numerical solution of the
following initial value problems:

my+(ww%7)y=o (3.161)

the initial conditions at ¢+ = 1 are chosen such that

1) = V1 J(100)
is the exact solution.

ﬁnf=-%. yo=-2 (3.162)

where r2 = x24)2,
The initial conditions are chosen such that x = cos ¢, y = sin 7 is the exact
solution of the nonlinear svstem.
(iii) The undamped Duffing equation
Y'+y+y'= Bcos Q1t (3.163)
forced by a harmonic function where B = 0.002 and 2 = 1.01. The exact
solution computed by the Galerkin method (see Section 8.2.3) with a preci-
sion 10712 of the coefficients is given by
y(1) = A, cos Qt+A;cos 3 Qt+ As cos 5 K
+Aq7c0s 7 2t+ A cos 9 Qr
where
A; = 0.200179477536
Az = 0.000246946143
As = 0.000000304014
Aq = 0.000000000374
Ay = 0.000000000000
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For problem (3.161), we take p, = 100'*‘2;]7 and the steplengths & = 0.2,

. ” .
0.5. The absolute error values E == | y,—)(t,) | are found fort = 1to
t = 6 and the values E at ¢ = 6 are presented in Table 3.16.
For problem (3.162), we take p ==’%— the the steplegths h = -118
n
absolute error values in radius R given by E = | 1 — R, | where R = x24+2,
x» and ys being computed values, are calculated from¢z=0tot = 12=
and the values E at ¢ = 12 7 are presented in Table 3.16. In solving the non-
linear problem (3.162), the initial approximations are obtained from the
exact solution. We used the Picard iteration and the formula is corrected
to converge with tolerance € = 1.0x 1071°, :
For problem (3.163), we take p = 1, 142 and 1.01, and steplengths

h= 1%, —1% . The absolute error values E= | ys— y(t,) | are calculated from

™
' o The

t=0to?=127 and the values E for p = 1 at ¢ = 40 = are listed in
Table 3.16.

The numerical results show that the Numerov method (3.125) produces
good results whenever the stability conditions are satisfied. For large step-
lengths, the Stiefel-Bettis method (3.159) gives the best results. It is obvious
from the numerical results that P-stability is an important requirement for
determining the numerical solutions of periodic initial value problems,

TABLE 3.16 COMPARISON OF ERRORS IN THE NUMERICAL SOLUTIONS

h\. Method Dahlquist Numerov Stiefel-Bettis
P-stable p—0 P
2 _1__ — — l
y +(100+4t,)y—0. t=6 100+53-
0.2 0.2774 0.2790 0.1240—03
0.5 0.4400 0.5585+4-06 0.5568 ~03
r? x 7 L P l
= —m Y= t=12r v
n
_l% 0.2631—02 0.6650—08 0.3740-08
1£o 0.3770—01 0.1514—06 0.2970—10
Y’'+y+y* = Bcos Qt 2 =101 B = 0.002
t=40~w 1
'1% 0.4324—01 0.3337—04 0.6116—06
% -0.1350 0.3512—03 0.6418—05
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In practice, we use a grid system in which each interval is a constant
multiple of the preceding one, i.e. :

hj+| = Gh/, j = l(l)N—'l (3172)

with o > 1, this gives more mesh points at small t, while ¢ < ] gives more
mesh points at large values of ¢.

3.9.3 Results from computation
We use the trapezoidal method (3.169) to find the numerical solution of
the following initial value problem

u' = ~2000u+999.75y+1000.25

v = y—v
with initial conditions

u(0) = 0, 2(0) = —2 over the interval [0, 10}
The exact solution is given by

u(r) = —1.499875 exp (—0.5¢)

+0.499875 exp (—2000.5¢)+1
u(t) = —2.99975 exp (—0.5¢)

—0.00025 exp (—2000.5¢)+1
From (3.172), we write as

hy+hy~+...4+hy = b—1,
or h = (b"fo)(c'- I)KO'N‘—I)
where o > 1.

(3.173)

From equation (3.173), choosing 0 = 1.5 and N = 25 we determine A, and-
then use the trapezoidal method to calculate the numerical solution. The
solution values are listed in Table 3.17. The graph of the solution is shown
in Figure 3.12.

TABLE 3.17 SOLUTION VALUES FOR STIFF SYsTEM USING TRAPEZOIDAL METHOD
WITH VARIABLE STEP

otr)

1 Un v, 1(ts)
0.1609—02 —0.48494+00 *  —0.19974-01 —0.4787400 —0.1997+01
0.9754—02 —0.4926+00 —0.19854-00 —0.4926400 —0.1985+01
0.5099—01 —0.46214-00 —0.1924+01 —0.46214-00 —0.19244-01
0.2597400 —-0.3172400 —0.16344-01 —0.31724-00 —0.1634+01
0.1317401 0.22444-01 —0.55124-01 0.22344-00 —05531+00 -
0.6666--01 0.95594-00 09118 +00 0.9465+00 0.89304-00
0.10004-02 0.99604-00 0.99204-00 0.98994-00 0.9798-+ 00
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t(le)
vt)

-2

Fig. 3.12 Solution of a stiff problem using trapezoidal method
with variable steps

Bibliographical note

The explicit and implicit multistep methods are discussed in detail in the
books 33, 93, 113, 161 and 163. Further 93 and 113 include an extensive
bibliography.

The reference 186 gives an iterated Adams Corrector method. The methods
with minimum truncation error and those with extended stability region are’
obtained in 54 and 119 respectively. The stability analysis of the multistep
methods has been examined in 18, 19, 32, 35, 68, 106, 122 and 228. The
convergence and error bounds are studied in 57and 58. The hybrid methods
are developed in 20, 26, 62, 91 and 101. The implicit methods to solve stiff
differential equations are discussed in the following references; A-stable, 11,
59, 74, 144, 171 and 187; stiffly stable, 92, 141, 200 and 255.

The multistep methods for undamped second order equation of motion
are given in 60, 110, 137, 162, 229, 230 and 250.

The adaptive methods for second order differential equations are given
in 135,
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Problems

1. Show that the linear explicit and implicit multistep methods given in
the text for the initial value problem y' = f(¢, ), ¥(to) = yo, are, res-
pectively, in terms of operators

[—(1=p)log A=p)] Yus1 = h ¥},
[=log (1 =p)] Yur1 = h Yy

and hence obtain the expansions given.
2. Find the order of the method of the form

Y1 = y"+h (boy;.,|+'b1 J’;.+b2 }';_|+b3 ,";;_2)
Determine the influence function and calculate the explicit form of the
€rror term.
3. Construct the influence function for Milne-Simpson’s method
h , . . ,
Ytz = Yn 3" (VpyatVn 20
and show that it does not change sign in [0, 2].
4. Show that the order of the linear multistep method
1 ) ,
yasrt(@=1) ya—a yn-y = - hll@a+3) yp, +@a+1) y,_,l

is2ifas —landitis3ifa= —1.

5. Find the constant c in the following methods so that the truncation
error is minimum:

() yne1 = (1=2¢) yat(2c=¢?) yn_y+c? yn_z
+ A m2049) sy, H(=53+260+19) 5,

+(19¢2+26¢~5) y,_, +(9c¢2—2c+1) y, _,]
(ii) Yar1 = (1=6) yat(c=c?) yn_s+c? Yy

+ 5’% [(2—c+9) ¥,y +( = 5¢2 + 13¢+19) ¥,

+(19¢2+13¢=5) y,_, +(9c*—c+1) y,_,]
6. If
p(g) = §—2+3¢ -1,
find a o(¢) such’t'hat:

(i) o(¢) is of second degree and the method has third order;
(ii) o(é) is of third degree and the method has fourth order.

What are the coefficients of the principal term of the truncation
error for these two methods?
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7.

10.

11.

12.

13.

If o(§) = £2, find p(€) such that:

(i) p(€) is of second degree and the order is two;
(ii) p(¢) is of third degree and the order is three.
Are these methods stable?

Find values of the constants such that the truncation error of the
corrector

VYnt1 = Q1 Yn+a2 Ynoy+h (b yf’H-l +b, y;.+b2 y;._l )

is of order A3. .

Show that the use of this corrector is unstable for all values of A for
solving the equation y' = Ay, A < 0. '

Find the maximum interval for stability with which the equation y' = Ay,
A < 0 may be integrated by the corrector

1 . .
Yosr = g [V =Yu 3 H3h Gy +200 =¥y )]

Find also the maximum interval with which the method may be used
to integrate the system

V= =3y+2z
2’ = 3y—4z
Find the range of « for which the linear multistep method
Yttt (Ya=Yn-1)=Ya-2 = § G+) h(y,+y;_,)

is stable. Show that there exists a value of « for which the method has
order 4.

Using the Routh-Hurwitz criterion, find the interval of absolute stability
of the methods:

() It = 3o + o Q3Y, =165, +57 )

. h ’ ’ ’ ’
@il) ynt1 = yn+27 (9}’,‘4,1 +19y,, =51 +y”-z)
Calculate the growth parameters for the following multistep methods:

@) It = It 2= 3% =)

) It = Youtt 2 (T =iy +¥pg)

Show that the error e, = y,—y(ts) in the k-step Adams-Bashforth-
formula

: k
Yust = urkh B by F by
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14,

15.

16.

17.

NUMERICAL SOLUTIONS
is bounded by
tn"'[ )B L)_l
len | < 8 exp (ta—tolbk L)+ | Ci | B Misy {e"p « B }
Where I‘II g l}’l‘}’(ﬂ” <8,1‘=0, ]'2l ""k_l¢

Bk=é|b:|

[ y®*D (1) | < My

[ f(t,z)=f(t,2) | S L |z ~2;|
Assuming that the starting values are exact, show that the error ¢, of
the Adams-Bashforth methods satisfy

€n = 8 (1) H*4-0 (A1)
where 3 (7,) denotes the solution of the initial value problem
& = f,(t, y (1)) 8~ Cx yi'"
] (to) =0

The formula

3 , . b
Ynt1 = Yn-2+ gh (Vnpt F39, 43Vt TVna)

with a small step length 4 is used for solving the equation y' = —y.
Investigate the convergence of the metnod. (BIT 7(1967),247)
Show that the following two-step method
4 1 2 .,
Int1 = 3 7 yn_1+-—3- hy i

is A-stable.
Determine also the error constant.

Find the conditions on a and b for which the following linear multistep
methods

O ori=(+@) petari = H (FU+a+5) vy
+ (lz (1—3a)-2b)y;,+b Vi ]

' 2
i) Iar = ok (1=0) Y+ (1+) Yy 1+ -6=a) 5

—=(+a)y,,,
are A-stable.

. Determine the multistep methods of the form

k
Vbt = Yuth 33 b Yy TH €0 Yy,

fork =1, 2, 3 and show that the methods are stiffly stable.
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19. Find the multistep methods for the form
k
Ynt1 =§ U Yno1+1+h b, Aympy +h2 ¢ Vngt

fork = 2, 3, Prove that the methods are stiffly stable.
20. Consider the predictor P and the two correctors C, €@, defined as
follows, by their characteristic Polynomials:

Pp® (g) = o (€) = S 2e—grpap)
CD:py(6) = g | o @) = L@ +agt)

Cory=p-Zpy L o et2-g)
8 8 8

Find the interval of absolute stability of (j) P—C (i) p-c@ pre-
dictor-corrector pair in P-M,~C- ¢ mode. Compare with the
results for the same pairs in PECE mode and show that the addition
of modifiers almost halveg the stability interva] for P—CM get and
almost doubles j¢ for the P—c@ set.

21. Consider the following p— ¢ set:

P: y,.+,+4yn~5}6-1 =} (4y;+2y1;—1)
h , ,
C: Ynpp = Yn_1+ ’3_(,1)”4., +4yn+yn‘l)

Form the characteristjc polynomial for the PECE algorithm, Hence
show that for small negative Ak, the algorithm jg relatively stable
acc..rding to the definition
€] < [ éml,j =2, 3, . k
22. Let ¢, be the root of p(€) =0 of Multiplicity », 2 1. Prove that for,
sufficiently smaj) h the root ¢ of p(§)~/\hc(£) = 0 can be written as

of£. 1im
=t (1 ((g:)) %) 40 (am)

23. Consider the two predictors p,, Pr, and the hybrid corrector Ch
defined as follows:

3h,. .
P, Inyya = yn-.+§(3y,,+y,._,)
Px: y,.+1+4y,.- 5)/::_1 =h (4)’,‘,‘!‘ 2)’,.‘—1)
h , ’
CH: Yuy, I = (U, FI 4 4102)

Find the interva] of absolute stability of Po EPy I:Cy, Lalgorithm.
Determine the loca) truncation error of P, Ep, ECiE mode.
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34,

35.

36.
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(c) If the scalar equation y’ = gy is integrated as above, which is the

-— pdX
largest value of p for which ’lling }i"—hi—yﬂ, X = nh, x fixed, bas a
ol

finite limit? (BIT 8 (1968), 138).

Let a linear multistep method for the initial value problem

Y =f(x, ), y(0) =y,

be applied to the test equation y’' = —y, If the resulting difference
equation has at least one characteristic root (k) such that | a(h) | > 1
for arbitrary small values of h, then the method is called weakly sta-
ble. Which of the following methods are weakly stable?

(@) ynst = yu_y+2h f(xn, yu)

(®) Vo = ~yut2yn-i+2h f(xn, ys)
Yntt = Yn_y+2h f(xn, Pn)

(©) Fne1 = ~4y,+5p,_,+2h Qfatsfor)

Vi1 = Inst 5 (S Gonty T+ 4t fos)

So = f(xn, va) (BIT 8 (1968), 343)
Use the two-step method

h, ., C
Yot = Yart 3 (G H4y, 4+,

to solve the test problem
Y =ay, )(0) = y,
where « < 0.
Determine lim | y, | and lim ¥(xn) where x, = nh, h fixed, and y (x)
fi~>00 n-»oo

is the exact solution of the test problem. (BIT 12 (1972), 272),
For the corrector formula ,
Ynt1=%Yn_y = A ya+B yn_y+h (Cy,,+D YatEy,_)+R

we have R = 0 (19),

(a) Showthat 4 = —g—(l -a), B= ——;(l—a) and determine C, D

and E,
(b) Show that the formula is not strongly unstable (that is the con-
verse of stable in the sense of Dabhlquist), if —0.6 < « < 1.
(BIT 13 (1973), 375).
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37. Consider the problem

1
y'=Ay,y(0)=[ ]
0
[—2 1]
A=
1 -20

(a) Show that the system is asymptotically stable.
(b) Examine the method

Vv = yi+ ‘;"(3ﬁ+l =f)

for the equation y’' = f(x, ).
What is its order of approximation?
Is it stable? Is it A-stable?

(c) Choose stepsizes h = 0.2and 4 — 0.1 and compute approximation
to ¥ (0.2) using the method in (6). Finally make a suitable extra-
polation to 4 = 0, (BIT 15 (1975), 335)

38. A certain 4-step method for the numerical solution of the initial value
problem

YV =fx,50) =c
is given by
Inta = yn+4h (B fut-B, Jot1 By far2+By foss)
Jo=¢
where  y; = y(x)), x; = jh
Li=fCny)i=0,1,2,..

The coeflicient B, is less than zero while the exact appearance of the
remaining coefficients Bi, ---, By is of no importance for this study.
The truncation error Yn=y(xu) is a power series in k. An attempt has
been made to determine the powers appearing in the series by using
the method with different stepsizes, h, for the computation of y(1) in
the test equation y’ = =¥ y(0) = 1. The starting values were yo=1,
Vi =€"y,=e% and y; = 3 The following results were ob-
tained,

k=15 y=0367706, &= 180 y = 0.36788
h=1/10  y=0367846, h=1/160 . y = 0.367879
h=1/20 y=10367873, &= 1/320 y = 0.367879
h=1/0  y=0367819, 1= 1640 y = 0.36788

(a) How do You usually use this kind of information to determine the
first powers in the series?
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39.

40.
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(b) Show that the approach in (a) does not work satisfactorily in this

case.
(c) Analyse the 4-stép method and show what makes the approach in
(a) useless. . (BIT 16(1976), 111)

To solve the differential equation

Yy =f(x17),y0) =y
the method

18 ; 6
Yort = 3 )byt g st 4ft et oo

is suggested, where fo = f(Xn, yn).

(a) What is the local truncation error of the method?
(b) Is the method stable? (BIT 20 (1980), 261)
The general solution of the differential equation y' = 1+a (14+x+y)

is y = 1+x+c exp (—ax). We attempt to calculate the solution given
by y (0) = 1 numerically. What happens to stability when

(a) a < 0; any method
(b) a > 0; the midpoint method
b1 =Yap)2h = 1+a(1+xs=n),
Xn = nh. (BIT 21 (1981), 136)
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Difference Methods for Boundary Value
Problems in Crdinary Differential Equations

4.1 INTRODUCTION

A general boundary value problem can be represented symbolically as

Liyl=r
Uyl =r,p=12..,m (4.1)
where L is an mth order differential operator, r is a given function and U

are the boundary conditions. We shall use x as an independent variable for
the boundary value problem.
If L represents an mth order linear differential operator and U, [y] re-

present two point boundary conditions, then (4.1) can be expressed in the
form

Lb) =v§fv(x) YV = fo(x) yHAi(x) '+ ... Ffulx)P™ = r(x), x € [a, b]
4.2)
Ue ] = :S::(: (@ YO (@ +bp, kYO B) = yp, 6= 1,2, ... m

For m = 2gq, the k boundary conditions which are linearly independent and
contain only derivatives up to (g— 1)th order are called the essential boun-
dary conditions, and the remaining (2¢— k) boundary conditions are termed
the suppressible boundary conditions.

The simplest boundary value problem is given by a second order differen-
tial equation

fx) Y +A(x) Y Hfo(x) y = r(x), x € [a, b) (4.3)

with one of the three boundary conditions given below.
The boundary conditions of the first kind are:

(i) »a) =y, yb) =7,



176 NLimERICAL SOLUTIONS
When this approximation is used in (4.5), we find that the solution: satisfies
: 1
- —h—zl:.'(x,.»r ) =2y (xa) + y(Xn=1)l 1 (xn)y(xn)

+0(h?) = r(xn) 4.7)

at the grid points xy, X2, ..., XN.

Dropping the error term in (4.7) and defining approximations yi, Y2, «--
yw to the values of the solution at the grid points x;, we get the system of
N equations

— Vot 20— Vgt B2 for yu = IPrn 4.8)
The boundary conditions become
If Yo = Y1 IN+1 = V2
rz -1 7 ‘
-1 2 -1 '
Y
A T T
L -2
yo+hir, - »
C = ’1_2" 2 Ly = ).’2
Yz+/;2r1v -}.?N :

then Equations (4.8), after incorperating the boundary conditions, can be
written as
J+nF)y=C
If | J+42 F| 5 O, then the solution of the above system becomes .
y = (J+RF)'C
The local truncation error is defined by
' To = — (P(Xne1) = 20(Xn)+y(xn_1))-H3 (X )Y (X0) = hPr(X,)

B G
= —-i-iy(?:))’ fn € (xn-ly xn+l)! n = l(l)N

If y € C¥*?, it means that the derivatives of y with respect to x are conti-
nuous up to orders p-+2, then in the present case, it may be pointed out,
we require y € C*in order to find the truncation error.
An important special case of (4.5) is
Lly] = y"+Aay = 0.
ya)=y(®b) =0 4.9)
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in which r(x) = 0, ¥, = 0, y; = 0 and f(x) = —A, so that the boundary
value problem is a simple type of eigenvalue problem. The difference Equa-
tion (4.8) and the boundary conditions become

= Va1t 2Yn=Ynt1—=Aya = 0,

Yo=0,yn4 =0 (4.10)
where 4 = A2\, Thus k24 determines the required characteristic parameter
in (4.9). The general solution of (4.10) can be written as

Yn = €1 €OS na-+c, sin no 4.11)
where ¢;, ¢, are arbitrary constants and we have substituted 4 = 2—2cos «
= 4 sin? «/2 in (4.10). The boundary condition yo = 0 gives

) = 0
while the second boundary condition yn+1 = 0 leads to the condition
c2sina(N+1) =0
As ¢; = 0 gives a trivial solution, we take
sina(N+1)=0
This yields

a(N+1)=km k= 1,2.... N

With this value of «, the N characteristic values of the quantity 4 are

. km
= 2 _ = “ee
N Ay = 4sin 2(N+1)’k 1,2, ... N
The corresponding N characteristic functions are given by
. ™
ok = sin n g, k=1,2,..,N 4.12)
Again, we take a special case of (4.3),

YVtpy =0 : (4.13)

ya) =1,yb) =0

where we have put r(x) = 0, f2(x) = 1, fi(x) = # a constant, fo(x) =0,
1 = 1 and y; = 0, so that the boundary value problem may be regarded
a simple type of second order differential equation with a significant first
derivative. Three different approximations for (4.13) in which the first deri-
vative is replaced by central, backward or forward difference, respectively
are

) 75 Onr1=at3n)+ S5 Gnrt=Yact) = 0
(i) 2 Guni=utyadt £ (= yun) = 0

(i) 2 (mri =2t )+ =) = 0« (4.14)
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b4 :,,—‘2A5y,,+1—67- 45y, — %-47 ST

. 7
,14}’(':") = V4j'n+275_}“n+'l_g- V6 n+ 7 V7y"+"'

7

8 — .
2403 Vr—..

1
84}’n - '6—' 86}'n+

4.3 NONLINEAR BOUNDARY VALUE PROBLEM y"' = f(x, )

Let us consider the numerical solution of the nonlinear differential
equation (4.4)
¥ = flx, ¥(x))
subject to the boundary conditions
Ya) = A, v(b) = B 4.17)
The diffcrential equation (4.4) together with (4.17) has a unique solution

provided fy(x, ») 2 0, x € [a, &), i.e., it is class M problem. We introduce
a finite set of grid points ’

Xe=atnh,n=20,1,2, .. N+1
where xo = a. xyy; = band i = (b—a)/(N+1).
We approximate (4.4) by the difference scheme of the form
-)'n—l+2J'n"yn+1+ll2 (IBO ):_l‘f’ﬁ] .)';;+ﬁ2 )’;+1) =0,1<n<N (4]8)
where BotBi+B; = 1, By = Bay yo = A, yn+y = B
The difference scheme (4.18) represents a system of nonlinear equations in
the unknowns y,, 1 < n < N, which in matrix form can be written as

Jy+/2Bf(y)+a =0 4.19)

2 -1 B

-1 2 -1

where J = ‘.
—1 .2 -1

_ —1 2 .
B B ]

Bo Bi Bz

B = . g .

B B B

_ Bo B
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F S, 31)

S(x2, y2)
fiy) = )

fom, v
— A+Bo 1 f(xo, A)
a=| 0
— B+B, B f(xn+1, B)

The system of nonlinear equations (4.19) is generally solved by Newton’s
method. If the first approximation is called y®, then the formulas for the
Newton method 2re in this case,

r(y(‘)) =J y(‘)+h2 B f(y(i))_*_a
Ay = —(J+h? B F(y")~' r(y®)

and finally
y(H‘l) = y(‘)+Ay(’)

where r(y) is a residual vector, F(y) being a diagonal matrix of order N,

[ fn 1
f:V’.
F(y) = )
L fou
and Jri = fxp31)

The Newton method has quadratic convergence, i.e., the number of correct
decimal places is doubled in the numerical solution at each iteration. The
iteration is repeated until the convergence is achieved.

4.3.1 Difference scheme based on quadrature formulas

We convert the original differential equation into an equivalent integro-
difference equation and then apply the quadrature formulas to evaluate the
integral in the equation. We illustrate this technique by finding the difference
equations for the second order differential equation y'" = f(x, y).

Let us consider the identity

Xni1

82p(Xn) = ] (xnt1=1) [y"" )+ "' 2xn—1)] dt (4.20)
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We also note from (4.30) that if r2 = 13/42, the truncation error of formula
(4.29) vanishes and we obtain an eighth order formula with only one off-
step point. Thus the optimal difference scheme with one off-step point is
found as

199 , 19 ” 441 ” 13
szyn = h? 3_96'v"+ 1740 (J’n-1+,Vn+x)+ '1885 (}’,.-, +yn+r) :]a rt= TZ

(4.33)
with the truncation error
* = - ___23—_. 10 ,,(10)
T, = 237081600" VIO (), Xnt < s < Xnty

We put v = 3 into (4.26) to get hybrid difference schemes with two off-step
points. N
The difference scheme is given by

Sya= I (Woyy+Wi(yy_,+yp.y) |
+ W (y:t—r+y;+r)+ W3 (y;;—a+y:+n)] (4.34)

where we have put 6, = r and 6, = s.
The two parameter families of sixth order methods can be obtained for
the two cases (i) W % 0, W; = 0, and (i) Wo = 0, W, # 0.

Fyn = R IWoy,+ Wy (¥, _, + ¥ )+ Ws Uyl (4.35)
2025 (p21 (2
where Wy = 30 r2s 33r(:sz+s )42
—5¢2 — 52
W, 2—5s and W, = 2—5r

T 60 rZ (12— 52
The truncation error in this case is

. 7 2 2 ‘ 2 2
= B 33%0“ 1213 48 30 (8, ey < £ < 2 (4.36)

6052 (s2—r?)

The value r? = 2/5 in (4.35) gives the formula (4.31). If we take
p=5=V5 544/
. 10 ° 10
then formula (4.35) becomes (4.24),
The values Wy = 0, W, # 0 give the two parameter family of method as
Fyn = KW (3 Hyp )+ Wa Ay )+ Ws M /) B C 1)

2026 (p2L o2
where W1=30's 5(r24-s?)+42

60(1-r?) (1-52)
3-2552
W= @a=r) ;7=
=952
W, 3-25r

= 60(1—r2) (s2—13)
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The truncation error of method (4.37) is given by

. (350 r2s2—42 (r2+s?)+13
Tn == 302400 < ) ) h8 y(s) (flo), Xn—1 < 510 < Xnti

The most general two parameter family of order eight formula is given by
8yn = B (Wo ypt+ Wi (y,_1+Vuy)

+Wa GtV )+ W3 (000 (4.38)
_ 350 r2s2—42(r2 459413
where W, = 350 1252

70r2s2—28 (r2+s2)+15

Wi= 00—y (-5
_ 13—4252
W = 840r2(1—r2) (r3—s?)
—_ 2
and 4 W, = 13—42r

840s2 (1—5?) (s2—r?)
The truncation error of this formula is

. 126r252—139 (r2+s2)+17
T, = - 20y 50890%0-(')- SHT 0 y0) (£,1), xay < 11 < Xns

If r2 = 13/42, we get the eighth order method (4.33). Thus corresponding
to every replacement of the right-hand side of (4.21) by an expression of the
form (4.25), we get a difference scheme involving one or more off-step points.
Furthermore, we also note that the difference scheme(4.26) will be of
computational value only if we have accurate estimates of the values of
3(x) at these off-step points. Therefore, for obtaining methods of order six,
we take one of the two following fourth order approximations to yn+9,

Approximation 1

h2 v
Yurg = (1 "'”4) Yatq yny1t 12 [(1 —4q+4q’—q’)y,.

+¢(g*+g-1) ¥+ @2 —q=1 ;. ] (4.39)
! B2 .
ya-a = (1=q) ynt g yni+ 5 (1-49+44*—a%) y, |
+q(@*+g— D, +(a?—q-Dy,_] (4.40)
where 8; = ¢. The truncation error in (4.39) and (4.40) are respectively
T,(l) = — Rsh3y® (xn)— Reh6y'®) (€1), Xn < &1 < Xntt
T} = Rsh’y® (xn) — Rh®y® (£2), xn_y < £2 < Xn (4.41)

— _1__. S__5,4 2_
Rs = 3¢5 (29°—5¢*+5¢9%—2q)

_ e e s edic, 34 82
R6—1440(3q 5¢°—5q*+5¢9°+592—3q) »(4.42)
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The approximate values yn, 1 <n < Ncanbe determined by solving the
system of linear equations (4.52).

4.3.3 Solution of tridiagonal system

The solution of the differential equation (4.46) subject to the boundary
conditions (4.47) leads to the solution of the system of algebraic equations
in N unknowns whose coefficients give rise to a special case of the tridiago-
nal system

—by Y tayyi—cr v =4 (4.54)

for 1 <j < N, where yo and yn4+; are known from the boundary condi-
tions.

If b;>0,a;>0,cj>0

and ay = (b;+cy)

for 1 < j < N, then we can construct a very efficient algorithm for solving
a tridiagonal system. Let us consider the difference relation

y; = W Y1181 4.55)
for 0 <j < N, from which we get
Vi-1 = wi1yst8ia (4.56)
Eliminating y;_; from equations (4.54) and (4.56), we obtain
- 4] drtbigi- 4.57
Y1 = "a5=by w1 it aj—bywi— @57
Thus
Wy = ] = drtbigi

aj—bywiy’ TE TR
If yo = A, then wo = 0, go = 4, so that the difference relation
Yo = Wo N1T80

holds for any y;. The remaining wj, &), j=1, ..., N can now be calculated
from

c di+bA

Wl=-zf, g‘=._.._-——-—l_*;ll

__C _ datbag

W2 = ga—bw 82 g, b
WN == CN gN — .i-"-—_t-b..N_glv:l_

&N
an—bywN_y’ an—bn wn_y
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If yn+1 = B, then yy, y,, ..., yn are calculated from
YN = wy Bt+gn
 YNo1 = WN_y yNHgN_
= wytg
The convergence of this method is ensured by the condition
fwal < 1,n=1,2,..., N
Example 4.1 Solve the first boundary value problem

w_2 1 - _
Y=y x,y(2) y3)=0

by the Numerov method with 4 = 1/4.
The interval [2, 3] is subdivided into four subintervals with 4 = 1/4; the
nodal points are given by

x1=2+ih, 0 <i <4

Applying the Numerov method at the nodal points x,, x2 and xs, we obtain
the following system of equations:

1 " A
)’0‘2}’1‘1‘.1’2—-1—9-5 (yo+ 10y, +y,) =0, (for X = —)
| _—
J’l"2J’2+}’3—m(y1+10y,+y,)-= 0, (for X; = )
2 1 " ‘o 11
y2= }’3+y4—'1'9'5(yz+10y3+y4) = 0, |{ for x; =%

Using the boundary conditions y, = yy =0 and y; = 2x;7 2y —x;!
0 < i < 4, in the previous equations and simplifying, we get

£

41 599 _ 481
243717 60072 = 17280
485 121 725 119
T486717 60 2T 7267 < 3752

599 731 121

~ 6007273637 = 31680

The solution of these equations together with the exact values obtained
from

= 1fi9,_ __3.§
y(x)—38(19x Sx x)

is given in Table 4.1,
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TABLE 4.1 SOLUTION OF y*’ = 2x~% y—x~1, »(2) = y(3) = 0, h = 1/4

,’ Xn b2 y('x')
2.25 0.378314—-01 0.378289-01
2.50 0.486868—01 0.486842—01

2.75 0.354382-01 0.354366~01

4.3.4 Mixed boundary conditions

The boundary conditions (4.47) are modified to
y' (@)—cyla) = A4
y' (b)+dy(b) = B - (4.58)
where we have assumede¢ = 0,d = 0, c+d > 0.

The differential equation (4.46) subject to the mixed boundary conditions
(4.58) will have a unique solution if f(x) = 0, x€la, b]. The system (4.48)
contains N equations in N+42 unknowns y;, 0 < i < N+1. We need to find
two more equations corresponding to the boundary conditions (4.58). For
example, for the sixth order method, we proceed as follows

1
P(xy) = y(x0)+h y'(xo)-+h? I (1=1) y"(xo+ht) dt (4.59)

0
1

and y(xn) = y(xn41)—h ¥ (xn41)+h? I (1—1) y"'(xn41—ht) dt (4.60)
0

Replacing the integral in (4.59) by the four point Lobatto quadrature for-
mula, we get

y(x1) = y(xo)+h y’(xo)+-2@; 125" (x0)+(5+V'5) " (xg+rh)

h7

+ (5= V/3) ¥ (ot sh)lH 555505 9 ()

5-v5 _ 5+V5§
0 10

where r = and xy < € < x;

Substituting the fourth order approximé.tions of y(xo+rh) and y(xo+sh)
given by (4.39), neglecting the truncation error, and using (4.46) and (4.58),
we obtain

(14By) yo+(—1+Co) y1 = Dy (4.61)
2 2 — —
where Bo= chtsfort mas (303+4/5)+(1+V/3) 12 f)P,
+(303=V5)+(1=V'5) 1*fy) Pi]
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Co = % [(60—(1+/5) ?f) Pr+(60—(1—/5) I3f)) P
Dy =—hA— 22 [(60g0+30) (5+V/5) gr+(5—V/3) g9

720
+R((1+V5) (g0—g)=3(5+V'5) &) P,
+((1=V/3) (9020 - 3(5—4/5) ) P}

The corresponding equation in yn and ywns; obtained from (4.60) is

(= 14+An+;) yn+(1+4Bn+y) yney = Dy (4.62)
R~ I _ :
where ANy = 720 [(60—(144/5) h¥fiv) PN+ir
+(60—(1—V/'5) B¥fw)Prs1.]
h? h? —_
Bnyy = hd+mf~+1+ 20 [(30(3+4/5)

+(1+4/5) h¥n41) Prair+(30(3—4/5)
+(1=V/5) B¥fns) Pryid]
— B (60gm 4305+ 4/5) gwe
+(5=V'5) gua) 2 ((A+V'5) (gne —gn)
—3(5+V'5) gne1er) Prusirt12 (1= V'5) (gn+1—gn)
—3(5=V'5) gns1-s) Prsid]

Grouping Equations (4.61), (4.48) and (4.62), we get

(14 Bo) yot+(—=14+Co) 1 = Dy
(—1+An) yn_|+(2+Bn) Yn+(_1+cn) Yoy = Dn, 1<n<N
(=14 4n+1) yn+(1+By+1) Y41 = DNy (4.63)

The above equations can be written as tridiagonal system as in (4.53), and
can be solved by the method given in Section 4.3.3.

Dy = h B

Example 4.2 Obtain numerical solution of the mixed boundary value
problem

y' = y—a4xe*
Y-y = 1,y (D+y(1) = —e
with step length h = 1/4.
The analytio solution is given by
y(x) =x(1-x)¢&
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We subdivide the interval [0, 1] into four subintervals, the nodal points "are
X, =nh, 0 < n < 4 and h = 1/4. The Numerov method gives the following
system of equations

—191pp+394y,— 191 ynst
= 4xp=g €1+ 40xpe* 1+ 4Xnsy €5, 1 <13
The boundary conditions become ’
Yo—Yo= Ly tys= —e
In order to approximate the boundary conditions, we consider the indentity
¥ (x1) = y (x0)+hy' (x0)+h*P D%y (x0)
where the operator P is given by
P = (E—1-~hD)(hD)™2

— (A R NP STV N
~ log(l+A))<A > 41 4 )

=1 L, 1 002 6 71 p )
2(1+34 Lol et

Thus, we have
y (x1) =y (xo)+hy" (x )+'12—( 144a-L 242 M )y"(x)
1 Y \(Xo Y {(Xo 2 3 2 5 o

Similarly, we get for the second boundary condition
, h? 1 1 2 "
Y (x3) =y (xa)—hy (x4)+-2—( 1-3 V-3 V35 pi-. )y (%)
We can now obtain various order approximations to the boundary condi-
tions. The Numerov method has local truncation error of order hS. There-
fore, in order to approximate the boundary conditions to the same order,
we retain third difference in the previous expressions and get
7297 yo— 5646 y,—39 y2+8 3
= —1440+4 (8 x5 €™ —39 xp % +112 x; €™ +97 xp ™)
8 y1—39 y,— 5646 y3+7297 y,
= — 1440 e+4 (97 x4 € + 114 x3 €% —39 x; " +8 x1 €®)
The solution of the linear system of equations and the exact values of y (x)
at x;, 0 < i < 4 are given in Table 4.2.

TABLE 4.2 SOLUTION OF y”/ = y—dx e, y' (0)—y (0) = 1, y' (D+p (1)>= —e

witH h = 1/4
Xa ¥ (%) \ L o es = Y (Xa)—Vs
0 0 0.612525—03 —0.622525~03
1 0.240754 0.241416 —0.661249—03
2 0.412180 0.412886 —0.706125-03
3 0.396937 0.397682 * —0.744520-03
4 0 0.759196 —03 —0.759196—03
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4.3.5 Boundary condition at infinity

We consider now a boundary value problem as given by (4.46) and
(4.47) but with the second boundary condition replaced by y (x) - 0 as
b — oo, The boundary conditions become

y@s=4,y(0)=0 S (4.64)
A typical method to solve the boundary value problem (4.46) and (4.64) is

to apply the boundary condition at a finite point or at several finite points.
Let us replace the second condition in (4.64) by

y(B™M) =0 (4.65)
where bM = g+ (N+1) h (4.66)

and N is'an unknown number to be determined.

We denote the -approximate value of y(x) at x = x, by ya™ when b™
is given by (4.66). The difference equations (4.48) and the boundary conditions
(4.64) can be written as

(—1+An)yf;“_”,+(2+Bn)y$,m+(—H-Cn) }J,(,ﬁ), =Dn 1 <n<N (4.67)
i = A’—"&Nil =0
As in Section 4.3.3, we write (4.67) in the form

Y = wy y 41, (4.68)
where wo 2= 0,lp=A

The equation (4.68) can now be used to express ¥, M .. as functions
of ¥™); the first unknown nodal value is then determined by the boundary
condition y{"), = 0, Thus an approximate value for ¥{™ and hence also
for ™), yiM, ...,y are obtained depending on N. The values of WY, for
a series of values of N will have differences which approximate closely to a
geometric sequence, and a suitable value of N will be reached as soon as the
criterion

| SV =y | <61 <n< N

is satisfied for a given e,

This procedure for determining the value of N is not well suited for
high speed computation and is rather time consuming, We now give a sim-
ple algorithm by which we can test the suitability of N without computing
Y, 1 < n < N. Evidently, the ¥, 1 < n < N, are obtained by back
substitution from (4.68). The values of wa and /, are given by

- —1+Cn
2+ Byt (— 14+ 40) Wa_;’

Da—(—1+4,) In_,
2+Bn+(—l+An) Wn._' i

Wnp =

I =

I1<n<N (4.69)
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and truncate it with 8%''(x,).
The required sixth order difference scheme is obtained as

h? . " N " .
—y"‘!+2y"_y”+1+m[ “Vn-2 +24yn—l+]94yn+24yn+1_yn+2] =0
(4.75)

The difference equation (4.75) has to be satisfied at the N points xi, X3,...,
xn inside (a, b). It is obvious that equation (4.75) associated with x, invol-
ves not only the values of y' at nodal points x,-;, X, and xa4; but also at
points X, and x,4,. Hence, when n = 1 or n = N, the difference equation
(4.75) would involve a fictitious quantity Y= y''(a—h)or yz’v'.*.z = y""(b+h)
so that a supplementary relation then would be required in correspondence
with each of those values of n. Generally, in such cases we take a lower
order difference equation near the end points. For example, if we satisfy the
Numerov difference scheme (4.23) near the boundary points then the required
system of nonlinear equations is given by

h? - R
2yl'—y2+']_§ (onl +)’2) =A4A- 1_2.1’0, n= 1)

h? " . ., " .
"_Vn_|+2yn"y'l+1+m (—y,,_z +24yn_, -l--194_)1”-*-24.}'”_'_I —y,,+2) = 0,

2<n<N-1,

.

2 2
—yN_|+2ytv+’1'—2 (yy_y +10yy) = B—% Yyss =N, (4.76)
and hence can be written in matrix form
h2

Jy+24—0 Bf(y)—a = 0, 4.77)

where J is defined in (4.19), B and & are given by

200 20 ]
24 194 24 -1
-1-- 24 -
B = PPt w
-1 24 194 24

L 20 200 ]
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2 o,
240 YN+t

h? .
L B"l'z‘yzv+1 i

The local truncation error of the method (4.75) is 0 (%) but in application
it is only 0 (4%) due to the first and the last equations in (4.76).

The nonlinear differential equation (4.4) subject to the mixed boundary
conditions (4.58) can be replaced by the following system of equations:

(ko) yomyit i (5 fork i J+hd = 0,

— Ynet42Vn— Ynt1+ 2 (Bofu—1+Bifa+Bofur) = 0,1 < n <N,
— o+ (1+hd) g+ (-t S fien )=hB =0 (478)

The sixth order difference scheme based on two off-step points can be
applied to the nonlinear mixed boundary value problem as follows:

The system of nonlinear equations for the differential equation (4.4) is
given by (4.72) for | < n <'N. The values of y at the points Xaxr and Xnss
can be obtained by using Approximation II. On substituting in (4.72) the
values of ynirand pais as given by (4.43) and (4.44), we get N nonlinear
equations in (N-+2) unknown ys, 0 < n < N+1. The two more relations
needed can be obtained by replacing the integrals in (4.59) and (4.60) by the
four-point Lobatto quadrature formula and neglecting the truncations.
We get

’ 12 ’” " ’y .
= yothy, +_l£2_ yo +S(sy, +ry,/ ) ‘ - (4.79)

’ h2 »” e Q)
and W = yN+1_h_VN+1 + 1_2' [yN+l +5(5 yN_'+l +r yN—l+l)] (480)

Here the values of yr, ¥s, YN—r+1 and yn_s41 are obtained from Adpproxima-
tion I1I.
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Approximation 111
va = (1-2¢°+9*) yo+(Q2g°~q*) y1+(g—24°+¢*) h ¥,

2 . "
+ 2 100~ 59 +34 g +a*=49 3} ) @481
g1 = (1=2¢°+¢*%) ynr1+(23— ¢ yv—(9—2¢°+4*) h vy,
h? " v
+-5 [29*=5¢3+39%) yy , +(g*—4°) vy] (4.82)
The truncation error in (4.81) and (4.82) are respectively
Tq = th .V(”(E; )9 X9 < f; < X
T:= —Qhr%yS (£), xn < €] < XN
N S S
0 = 305 G’ ~Tg*+4¢%
The required two relations are given by

(1) ya= i+ 2 1 (xo, y0)-+5(6FCor, y)+1f(xe, plHhA =0 (483)

2 :
—yn+ (1+dh) yny, +1£2 [ f(xN41s yN+|)+5(Sf(XN-r-'{-1, YN-rs1)

+rf(XN=st1, YN=s4+1))]—hB = 0 (4.84)

Thus, (4.72), (4.83) and (4.84) give the required (N+2) nonlinear equations
in the unknowns y,, 0 < n < N+  [he truncation error is obtained as

i 11 7 ,] .
(8) 5 (5)
[252000 Y® (i)t 108000+ ¥ (¥ 5e5g frSrew ¥
+0(k®), n =0, N+1

T, = ,
1 1 1
— ® —_— - Y ) (x,) |h®
[302400 y(8 (X,,) 8640 f.V y“) (xn) 720(fxy+) fJ'.V)y (x )]h
! +0A1%, 1 <n <N (4.85)

We can again solve the nonlinear system by Newton method or by the itera-
tion method given in Section 3.6.1. If pth approximation to the vector
Y =¥yt - yn4,]T is denoted by y® = [y§p yipr ... qu]T, then the
iteration process for (4.77) can be described by the equations

240

2
J yP+D = — hO Bf (y)+a,p=0,1,2, ... (4.86)
where y© js the initial approxih:ation of y.
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Example 4.4 Obtain the numerical solution of the nonlinear boundary value
problem

y' = 17 (1+x+y)?
YO=30) = = y(D+3(1) = 1

. 1 1
with h = 7 and -6—Z

The analytical solution of the boundary value problem is

2
y(x) = ?:-——x—x_l

We define the nodal points x;
x; = ih h = 1/(N+1),i=0,1,2, ..., N+1

Applying (4.78) with By = B, = 0, B; = 1, to the boundary value problem,
we get

2
(1+h)yo'y1+112‘[% (1+X0+J’o)3+‘16— (1+x,+y1)? ] —-}2—1' =0
— ne A =yt o B+ = 0,1 < <N

2 |
kRt E L bt § Gty | —h=0

The system of nonlinear equations has been solved by the Newton method.
For N = 1,ie., h = 1/2, we get

3 11 1/(3 3
> Yo—yit —8'(-3-‘ (l+yo)3+—g-(7 +» ) ) —'4L =0
1/3 3
—yo+2y1—yz-l- "§‘ 7+}’1 =0
TR NI (8 ¥ X L1 YL _
nt 2yz+8(6(2 +y;)+ 3 (2+y2))—-2 =0

The Newton method gives the following linear equations

: 2
l'._g_+_;_ (1+y(op))2 —1+_116—(%+y(lp)) 0 —l I_Aysfr) ._]
2
-1 2+%(% +y‘,’)) -1 4y
0 -1+ _l_(i+ s’))z _3'. +._1_ Q+ sr))z AP
L 16\2 "7 2 Ty TR g
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M3 171 1/3 31 1 )
3 g g (3 0e) -4

I.
| |
' W90 —perr 1 (3 o)
! =Y P2 =y +—8—(—2_ +J’1P) =0
| |
|
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+

5 Wy = e [ 1(3 Y. 1 @y | 1
L -V +73’2 +—§ 6\ 2 + +-3_(2+y2 ) Y

where

y(()a+l) = y(‘,'“)-}-dy(g’
y§P+l) _ ysp)_*_dygn)

y;FH) = y(zﬂ) +Ay(2")
Using y{® = 0.001, (@ = —0.1, ¥§® = 0.001, we get, after three iterations

y» = -0,0023, y® = —0.1622, yP = —0.0228.
The numerical results with 4 = 1/64 at the interval of 1/4 are given in
Table 4.4,

TABLE 4.4 SOLUTION OF 3"’ = §(14+x+y), y'(0)=3(0) = —1/2,
Y+ =1,h = 1/64

Xi

Ve y(x1)
0.0 0.000028 0.0
0.25 -0.107106 —0.107143
0.50 —0.166622 —0.166667
0.75 —0.149948 —0.15
1.00 0.000048 0.0

4.4 NONLINEAR BOUNDARY VALUE PROBLEM " = f(x, y, y')

We consider the general second order nonlinear differential equation

y' =f(x,y, '), xEla, b] (4.87)

subject to appropriate boundary conditions. Letting y’ = z, we assume that,
for x€[a, b] and —o0 < y, z < oo,

(i) f(x, y, z) is continuous,
of of

(ii) 67 and 37 exist and are continuous,

() 7 ...
(i) 7;%> 0 and| %;f I < W, for some positive W.



